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Abstract
1. Rising ocean temperatures pose a continuing threat to marine fish communities. 

As warming has far- reaching impacts at multiple ecological levels, incorporat-
ing multimodal data is necessary for more accurately forecasting the responses 
of species and communities to the warming ocean. Range shifts, life- history 
changes, and alterations of trophic dynamics are three important aspects of 
warming impacts, yet there has not been a formal integration of all three aspects 
in the same analysis.

2. Here, we present a novel framework that integrates species distribution projec-
tions, life- history changes, and food web dynamics to assess warming impacts 
on marine fish communities. We first introduce a simple yet effective way of 
incorporating thermal physiological data into the species distribution model 
without the need to empirically measure thermal performance curves. We then 
use the dynamic size- spectrum model as the modeling backbone to incorpo-
rate data from species distributions and population- level life history analyses. 
With this framework, we evaluate how individual species are affected under 
two warming scenarios (RCP4.5 and RCP8.5). We also simulate large- scale top- 
down and bottom- up perturbations to examine community resilience under ris-
ing temperatures.

3. We find that warming generally reduces species biomass and shifts species size 
spectra towards larger individuals, even though the maximum size tends to de-
crease under warming. However, the exact responses to rising temperatures dif-
fer among species and do not exhibit strong correlations with species size and 
the pace of life history. More severe warming also renders the focal community 
more vulnerable to top- down perturbations, even though the community re-
mains sufficiently resilient overall.

4. The complex nature of species and community responses result from the fact 
that distribution range, life history, and food web dynamics change with warming 
in different directions that may not be intuitive to predict a priori. Importantly, 
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1  |  INTRODUC TION

Anthropogenic carbon emissions have caused sea temperatures to 
rise globally, and this alarming trend is projected to persist to the 
end of the century and beyond (Bindoff et al., 2019). Marine ecosys-
tems, especially fish communities, have been essential in providing 
resources and services and are under threat from the disrupted ther-
mal environment. Assessing warming impacts on marine fish com-
munities therefore has become a pressing issue at the intersection 
of ecology, conversation and fisheries. Changes in sea temperature 
have far- reaching consequences at all ecological levels (Hollowed 
et al., 2013). At the individual level, warming can alter physiologi-
cal processes (e.g. metabolic rate) and whole- organism performance 
(e.g. locomotor speed and endurance; Schulte et al., 2013). At the 
population level, rising temperatures can cause significant shifts in 
life histories (van Gils et al., 2016; Wang et al., 2020), size struc-
ture and abundance (Blanchard et al., 2012), and spatial distribu-
tion (Gervais et al., 2021). Beyond individual species, warming can 
affect species interactions, most notably trophic dynamics (Reum 
et al., 2020), and ecosystem functions (Dossena et al., 2012). These 
effects can interact with one another and propagate to cumulatively 
impact community composition and resilience (Doney et al., 2012). 
Since the effects of warming are all- encompassing, assessing how 
species and communities might respond to rising temperatures re-
quires an approach that integrates information and processes from 
the individual to community levels.

Life- history changes, range shifts and alterations of trophic dy-
namics are three important axes for assessing the effects of warm-
ing on species and communities (Hollowed et al., 2013). To these 
ends, statistical life- history models, species distribution models and 
size- based food web models have been developed as useful analyti-
cal tools and are widely implemented for multiple taxonomic groups. 
Over the past few decades, there have been key advances in more 
rigorously assessing warming effects on these three fronts. Recent 
studies have demonstrated the utility of using trait variation across 
spatial scales to forecast temporal shifts in life histories under future 
climates (e.g. Audzijonyte et al., 2020; Wang et al., 2020). At the same 
time, much progress has occurred to allow for incorporating data en-
compassing multiple ecological scales and processes for generating 

warming- related predictions and hypotheses testing (Blanchard 
et al., 2012, 2014; Clarke et al., 2021; Peterson et al., 2019; Stuart- 
Smith et al., 2017; Talluto et al., 2016; Wabnitz et al., 2018). Despite 
significant progress on each front, there has not been a formal at-
tempt to integrate information from species distribution models, 
statistical life- history analyses and food web models within the 
same analytical framework. As each of the three approaches cap-
tures a unique facet of warming impacts, evaluating the effects of 
rising temperatures on species and communities will be incomplete 
and biased if insights from all three approaches are not taken into 
account simultaneously.

Here, we present an integrative framework that uses dynamic 
size- spectrum models as the backbone to unite species distribu-
tion projections and population- level life- history data (Figure 1). 
Additionally, we introduce a simple yet effective approach for ap-
proximating thermal tolerance curves for species, which enhances 
the performance of distribution projections. This approximation 
does not require an empirically measured relationship between tem-
perature and fitness, which is challenging, if not impractical, to col-
lect for most marine fishes. Instead, the only physiological variable 
required is the maximum or minimum critical temperature (CTmax or 
CTmin, respectively), which has been estimated for a large number of 
species (e.g. Bennett et al., 2018; Comte & Olden, 2017). In its full 
capacity, our framework allows the integration of multimodal data 
from the individual, species and community levels, including ther-
mal tolerance, species distribution projections, life- history, diet and 
distribution- informed trophic interactions.

Based on projected RCP4.5 and RCP8.5 scenarios, the objec-
tives of this study are (a) to examine changes in species size spec-
tra (the distribution of biomass density with body size), abundance, 
and mean body size, and (b) to assess changes in community size 
spectra and evaluate the community's ability to recover from large- 
scale disturbances. Specifically, we expect that warming impacts 
would be more severe in species with faster life histories (i.e. smaller 
species) and inhabiting higher latitudes (temperate species). We 
also expect that warming would render communities more vulner-
able to large disturbances, with more severe warming having more 
pronounced impacts. We test these predictions with the fish com-
munity inhabiting the continental shelf of eastern United States 

we show that neglecting changes in species distribution or life history will lead to 
biased assessment of species and community responses. Our analyses highlight 
trophic dynamics, species biomass, and community resilience as three emergent 
properties that our framework can uniquely quantify. This integrative frame-
work is readily applicable to other communities of interest and can be scaled up 
for multi- regional or global analyses.

K E Y W O R D S
Bayesian species distribution model, dynamic size- spectrum model, resilience, thermal 
performance curve, trophic interaction
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(25°– 45°N, 65°– 80°W). We choose this exclusive economic zone 
for the availability of long- term species occurrence data (~50 years) 
and its history of human exploitation and economical importance. 
Nevertheless, our analytical framework can be readily applied to 
any marine communities of interest, provided that sufficient data 
are available.

2  |  MATERIAL S AND METHODS

We integrated physiology- guided species distribution models (here-
after physiology SDMs), life- history data and dynamic size- spectrum 
models to explore how species size spectra, community struc-
ture and community resilience might change in a warming climate. 
Because of this overarching focus, we used temperature as the sole 
environmental factor in our analyses. Even though other factors, 
such as net primary production, are also crucial in mediating climate 
impacts on communities, temperature has a unique importance in 
that it directly influences the potential distributions and life histories 
of species (Figure 1). Our method therefore offers a data- driven ap-
proach to model temperature dependence of physiological and eco-
logical processes within an ecosystem.

2.1  |  Species occurrences and temperature data

We obtained species occurrence data in our study area from the 
Northeast Fisheries Science Center (NEFSC)'s bottom trawl surveys 
from 1948 to 2008, with a total of 872 recorded fish species (Families 

Actinopterygii and Elasmobranchii) (Depres & Benson, 2020). In all, 
37 species with at least 1,000 occurrence records and sufficient 
population- level life- history data (see Section 2.4) were used for 
subsequent SDMs. These species were present in at least 36 out of 
50 survey years.

Collection depth in the raw survey data was bracketed by a min-
imum and a maximum depth, we therefore estimated the collection 
depth (in meters) of each occurrence record as the mean of the min-
imum and maximum depth associated with the recorded collection. 
We then converted the geographical coordinates of each record into 
1° × 1° cells for a program by Webb et al. (2020), which matched the 
cell coordinate, collection depth and collection time (month within 
year) to the global gridded temperature dataset from the Institute 
of Atmospheric Physics (Cheng et al., 2017). We discarded records 
without matched temperature due to missing data or spurious depth 
values. We chose this temperature dataset over others with finer 
geographical resolution for its depth- calibration of sea temperature.

To assess the effects of warming, we used the year 2013 as the 
baseline for comparison (referred to as ‘current climate’ hereafter). 
We obtained the annual maximum of sea surface and sea bottom 
temperatures (maxSST and maxSBT, respectively) in 2013 from the 
NOAA World Ocean Atlas 2013, as well as those under the RCP4.5 
and RCP8.5 warming scenarios during the years 2090– 2100 from the 
Bio- ORACLE models (Assis et al., 2017). RCP4.5 represents a sce-
nario in which the greenhouse gas concentrations stabilize, whereas 
RCP8.5 represents a scenario of increasing emissions over time. The 
geographical resolution of these datasets was 0.25° × 0.25°, result-
ing in a total of 677 cells within the study area. We used temperature 
maxima instead of time- averaged temperatures when evaluating 

F I G U R E  1  The analytical framework 
of this study, illustrating the integration of 
species distribution data and life- history 
data into dynamic size- spectrum model. 
Variables and model outputs in red are 
those directly affected by temperature. 
The arrows indicate how outputs from 
species distribution model and life- history 
model serve as input variables in the size- 
spectrum model
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species presence because we wanted to take a more conservative 
approach in testing the hypothesis regarding species distributions. 
Using maximal temperatures that represent the most challenging 
condition for species, we would be more confident in trusting the 
predicted presences from the SDMs.

2.2  |  Estimating species' thermal 
performance curves

A thermal performance curve describes the relationship between 
temperature and an organism's relative fitness (Angilletta, 2006; 
Huey & Kingsolver, 1989; Huey & Stevenson, 1979). Although the 
curve should be left- skewed (Bennett & Huey, 1990; Martin & 
Huey, 2008), in practice its shape is often approximated using a 
symmetric Gaussian function, which has been shown to strike the 
best balance between goodness- of- fit to the data and model com-
plexity, requiring only three parameters to define (Angilletta, 2006). 
We approximated the thermal performance curve for a species 
with the following information: the maximum critical temperature 
(CTmax), the relative fitness at CTmax and the temperature at which 
its fitness is maximal (optimal temperature, Topt). We used thermal 
affinity as a proxy for its Topt (Audzijonyte et al., 2020; Stuart- Smith 
et al., 2015, 2017). For each species, we first examined the distri-
bution of temperature associated with each observation. We then 
removed observations outside the 2.5 and 97.5 percentiles and used 
the midpoint of the truncated distribution to represent the spe-
cies' thermal affinity. CTmax data were available for 15 species from 
Bennett et al. (2018) and Comte and Olden (2017). Since there is no 
theoretical or empirical consensus regarding the value of relative fit-
ness at CTmax, we set the relative fitness at CTmax to be 0.05 (5% of 
the fitness at Topt).

2.3  |  Physiology- guided species 
distribution models

We constructed SDMs using a Bayesian hierarchical framework re-
cently developed by Talluto et al. (2016). This new method utilized 
Bayesian generalized linear models (GLMs) with environmental varia-
bles as predictors and presence– absence data as the binary response 
variable to produce probabilistic estimates of species presence (i.e. 
suitability) under different environmental conditions (the normal 
SDM). Since our data were presence- only, we created pseudoab-
sence data for a species as the presence of all other species (regard-
ing both location and depth) that did not share the same cell- depth 
combination with any presence records of the focal species. We 
considered depth when defining pseudoabsences as it is an impor-
tant dimension along which temperature and ecology vary for fishes. 
For a thoroughly surveyed area, this approach was effective in in-
ferring pseudoabsences while taking into account both niche differ-
ences and spatial accessibility. If the thermal performance curve was 
available for a species, the SDM could produce a physiology- guided 

model (the physiology SDM). This method represented a significant 
breakthrough in implementing correlative SDMs with species physi-
ology, offering the potential for more accurately predicting species 
distributions (Gamliel et al., 2020). We constructed both the normal 
SDM and the physiology SDM for the 15 species with CTmax data. 
We also tested whether the physiology SDMs were sensitive to the 
use of thermal affinity as Topt by constructing a separate set of SDMs 
whose Topt were set to be 30% higher than thermal affinity. The SDM 
results were qualitatively similar with respect to the actual Topt val-
ues (Table S1), indicating that the SDMs were robust to potential 
difference between thermal affinity and Topt. For the other species, 
only the normal SDM was constructed. As is common for large- scale 
SDMs, we did not consider species interactions and anthropogenic 
interferences such as fishing at this point of the analyses. However, 
these factors played a role in producing the presence– absence pat-
terns in the data, and it was difficult to isolate their effects at this 
stage of the analyses. We explicitly incorporated these important 
factors in the size- spectrum models instead.

When constructing the normal SDMs, we used temperature 
and its square term as predictors in the Bayesian GLM to model the 
unimodal, nonlinear relationship between temperature and habitat 
suitability (Gamliel et al., 2020; Talluto et al., 2016). For pelagic and 
benthic species, we used sea surface and sea bottom temperatures, 
respectively. For benthopelagic species, we used the average be-
tween sea surface and sea bottom temperatures. We used uninfor-
mative Gaussian priors as in Talluto et al. (2016) for the regression 
coefficients (μ = 0, 𝜎 = 10,000). To estimate the posterior distribu-
tion of these coefficients, we used an MCMC algorithm with an ini-
tial 1,000 tuning samples, a burn- in period of 4,000 samples, and an 
additional 4,000 samples, from which the result of Bayesian GLM 
was derived. We discerned the convergence of the MCMC using 
the Gelman index; values lower than 1.2 were considered conver-
gence (Carpenter et al., 2017; Gelman & Rubin, 1992). For species 
with CTmax data, we used relative fitness directly as a measure of 
suitability and performed Bayesian beta regression over the range 
of 0– 40°C (the physiology sub- model), using vague Gaussian priors 
(μ = 0, 𝜎 = 1,000). Posterior distributions of the regression coeffi-
cients in the physiology sub- model were then used as priors for the 
same coefficients in Bayesian GLMs when constructing the physiol-
ogy SDMs (Talluto et al., 2016). The weight of the physiology sub- 
model was set to be equal to the normal SDMs, although the results 
were robust to variation in this parameter (Table S1). Other settings 
were consistent with the normal SDMs.

We used a 70% random sample from the species' presence- 
pseudoabsence data for model training, and the remaining 30% 
of the data for testing model performance. For species whose 
presence- pseudoabsence ratio was below 0.2, we randomly chose 
a portion of the pseudoabsence data such that the presence- 
pseudoabsence ratio was 0.2 in both the training and testing data-
sets. We performed cross- validation 20 times per species and used 
the Boyce index to assess model performance (Hirzel et al., 2006). 
Boyce index has values ranging from −1 to 1, with higher values indi-
cating better SDM performance. We also calculated kmax values from 
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each round of cross validation, which is a threshold for converting 
the continuous suitability values into binary presence– absence out-
comes (Hirzel et al., 2006). Habitats with a lower suitability than kmax 
would be considered unsuitable for the focal species (i.e. predicted 
absence). Overall, our models achieved high predictive accuracies 
(Table S2).

We used all presence- pseudoabsence data under 0.25° × 0.25° 
spatial resolution to better capture distributional characteristics 
of species under current and future climates. We recognized that 
the spatial resolution was finer here compared to the dataset used 
to construct SDMs. Since the temperature– suitability relationship 
would not vary with spatial resolution, we believed this would not 
influence presence predictions from the SDMs. For each species, we 
used the average of 20 kmax values from the SDM (normal or physi-
ology) with better performance as the threshold for translating con-
tinuous suitability values to presence or absence.

2.4  |  Statistical life- history model

We focused on three life- history traits: asymptotic weight, weight 
at maturity and von Bertalanffy growth coefficient, as these are 
important diagnostic traits of a species' life history and key pa-
rameters for the size spectrum model. As length was more often 
used to represent size than weight for most species, we began 
by compiling population- level data on asymptotic length, length 
at maturity, von Bertalanffy coefficient and mean environmen-
tal temperature from FishBase and references therein (www.
fishb ase.se). We supplemented data from FishBase with Google 
Scholar literature search, using a combination of species names, 
body size, size at maturation and von Bertalanffy as keywords. 
For each population, we used the mean between males and fe-
males whenever data from both sexes were available. We esti-
mated length at maturity as 2/3 asymptotic body length when 
the former was not directly available (Froese & Binohlan, 2000). 
When there were fewer than three population- level observa-
tions, we broadened the search to include data from other spe-
cies in the same genus (i.e. congeners), regardless of their range 
of distribution. Consequently, we excluded 24 species from fur-
ther analyses due to insufficient data. We then converted weight 
from length using equations from (Barnes et al., 2008). For species 
whose length– weight equations were not available, we used equa-
tions at the genus or family levels. If even such equations were 
not available, we converted weight from length with a generic 
equation: weight = 0.02 × length3 (Barnes et al., 2008). Overall, 
we obtained data for 37 species from 444 populations. In all, 17 
of these 37 species included population- level data from conge-
ners. For each species, we first calculated the mean temperature 
from all the populations. We then defined temperature anomaly 
as the difference in temperature between each population from 
the population- wide mean temperature (Wang et al., 2020). We 
used temperature anomaly of each population as the fixed- effect 
predictor in the statistical models.

To quantify temperature effect on life- history traits, we con-
structed separate linear models using the lm or lmer functions in the 
r package lme4 (Bates & Mächler, 2014), with maximum mass, mass 
at maturity or von Bertalanffy coefficient as the response variable. 
We constructed four linear models with temperature anomaly as a 
fixed factor and species as a random factor. Four different models 
were constructed, representing different hypotheses regarding the 
slope and the intercept between life- history traits and temperature 
anomaly between species (Table S3). The Akaike information crite-
rion (AIC) indicated that the model with species- specific slopes and 
intercepts was the best for all three life- history traits (Table S3). We 
obtained species- specific slopes and intercepts between the three 
life- history traits and temperature anomaly from the three lmer lin-
ear models, representing the magnitude of life- history changes with 
temperature for each species. To quantify life- history changes be-
tween current and future climates, we averaged the temperatures 
across cells in which a species was present under different climate 
scenarios (current, RCP4.5 and RCP8.5). We then inferred changes 
in life- history traits under warmer temperatures using the species- 
specific equations from the statistical models, given the difference 
between the temperature, averaged over suitable habitats, under 
current and future climates.

2.5  |  Dynamic size- spectrum model

Size- spectrum models are a type of physiologically structured 
models in which vital ecological, physiological and life- history pro-
cesses of individuals are described in relation to its size (Andersen 
& Beyer, 2006; Hartvig et al., 2011, see also figure 1 in Scott 
et al., 2014). These individual- based processes can be scaled to sim-
ulate the transference and circulation of biomass through the food 
web to generate steady- state size spectra, which are distributions of 
biomass density against size (i.e. weight). We used the mizer package 
in r to construct size- spectrum models (Scott et al., 2014). mizer can 
build size- spectrum models of different complexity, ranging from 
single- species models, to simple community models where individu-
als are only described by their size without species- specific informa-
tion, to multispecies models where different sets of parameters can 
be set for each species in the community. For this study, we used the 
multispecies version of the mizer model. In all, 19 species that had 
reliable SDM results and sufficient spatial overlap with other species 
in the community were used in the dynamic size- spectrum model 
(Table S4). The standard model building and calibration procedures 
in mizer, as well as associated data collection, were described in more 
detail in the Supplementary Methods. We followed the same proce-
dure when constructing models for the current and future climates. 
However, several aspects of model input were different for future 
models, which we explain below.

To construct dynamic size- spectrum models under future cli-
mates, we input new life- history variables based on results from the 
statistical life- history models. We note here that we were comparing 
time- averaged conditions of past and future instead of a projected 

http://www.fishbase.se
http://www.fishbase.se
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time series. Dietary preference parameters (𝛽 and 𝜎) did not vary 
systematically with temperature and therefore had the same values 
under all climate scenarios (Barnes et al., 2010). Spatial overlaps in 
the interaction matrices were re- calculated based on predicted dis-
tributions and habitat associations of interacting species. Regarding 
changes in background resource, Blanchard et al. (2012) estimated 
a 6% decrease in primary production along the east coast of North 
America under ‘business- as- usual’ emission in 2050, which led to 
a small decrease in overall fish biomass (6%). We therefore set the 
amount of background resources to decrease by 12% between 2013 
and 2100, as a continuation of the trend in Blanchard et al. (2012). 
To calibrate simulation results for future climates, we first inferred 
catches under the RCP4.5 and RCP8.5 scenarios by multiplying 
the time- averaged catch data from 2000 to 2016 by the percent 
changes in the number of suitable cells from current conditions. We 
then optimized maximal recruitment of species to minimize the sum 
of squared error between output biomass and the inferred catch 
under the RCP4.5 and RCP8.5 scenarios.

We tested community resilience to large- scale perturbations with 
the calibrated mizer models. Numerous definitions and approaches 
existed for evaluating resilience of systems (O'Leary et al., 2017). 
Here we followed Pimm (1984), who defined resilience as the rate at 
which a system returns to equilibrium following disturbance. To esti-
mate community resilience under warming, we simulated both a top- 
down and a bottom- up perturbation as in Blanchard et al. (2010). 
The top- down perturbation was as a 50% mortality on individuals 
larger than 10 g; the bottom- up perturbation was a 50% increase 
in the density of background resources. Each perturbation event 
persisted for 1.2 months. We ran the simulations for 300 years until 
the community reached equilibrium, as confirmed with augmented 
Dickey- Fuller tests (tseries package in r). We then evaluated the time 
needed for community biomass to reach steady- state (return time in 
months, TR) following Neubert and Caswell (1997):

where TB(t) was the percent change in the total biomass density rela-
tive to the steady- state value prior to perturbations (TB0, which was 
set to 1). The integration was carried out for the entire time frame of 
the analysis (t from 0 to tmax).

2.6  |  Assessing the importance of warming- 
induced changes in species distribution and life 
history in predicting community responses

We first used a model selection approach to assess the contribu-
tions of species distribution and life history in gauging the responses 
of species biomass to warming. We constructed the full model with 
changes in asymptotic weight, von Bertalanffy coefficient and habi-
tat availability predicted from the SDMs as predictors. We then 
eliminated the predictors one at a time and observed changes in the 

AIC scores. If eliminating a predictor resulted in a significantly lower 
AIC score, it would mean that the predictor was not essential in pre-
dicting changes in species biomass under warming.

To further demonstrate the importance of incorporating both 
changes in species distribution and life history in the community- 
level analyses, we constructed two alternative models under the 
RCP4.5 and RCP8.5 scenarios. In one alternative model (Mno.inter), we 
built and calibrated the model in the same way as described previ-
ously, except that we used the current interaction matrices in all fu-
ture scenarios. In the other alternative model (Mno.lifehis), life- history 
traits remained unchanged between current and future climates. We 
compared the community size spectra between the original model 
and the two alternative models to quantify the importance of con-
sidering changes in trophic interactions and life history in affecting 
model outcomes. We also compared community resilience between 
the original and the two alternative models to evaluate the potential 
biases in estimating community responses to warming.

3  |  RESULTS

3.1  |  Warming caused shifts in species distribution 
and altered trophic interactions

The Bayesian SDM performed well in predicting presences during 
cross- validation; the Boyce index and kmax values were consistent 
among iterations, indicating the robustness of the SDM results 
(Table S2). The physiology SDM outperformed the normal SDM in 9 
out of 15 species for which both SDMs were constructed. Notably, 
approximated thermal performance curves enabled the construc-
tion of SDMs for two species for which parameters of normal SDMs 
could not be estimated due to insufficient observations (Anchoa 
mitchilli and Cynoscion regalis). A previous study using the same 
Bayesian hierarchical models had shown that physiology SDMs built 
with empirically measured thermal tolerance curves had an advan-
tage over the normal SDM in predicting species presence (Gamliel 
et al., 2020). Our results further demonstrated that even with much 
limited information (only critical temperature and thermal affinity), 
the approximated thermal performance curves can substantially en-
hance physiology SDM construction and performance.

Under warming, 13 temperate species shrunk in range due to 
lower- latitude habitats becoming unsuitable (Figures S1– S3; Table 
S5). In contrast, three temperate and two subtropical species ex-
panded in range; one subtropical species (Alosa sapidissima) was even 
predicted to be present throughout the study area in all climate sce-
narios (Figures S1– S3). Shifts in range also affected spatial overlap 
and trophic interactions between species. Pairwise overlap involving 
temperate species decreased in future climates as a result of general 
range shrinkage (temperate– temperate: 0.67 in 2013 (SD = 0.32) to 
0.50 under RCP4.5 (SD = 0.35) and 0.41 under RCP8.5 (SD = 0.38); 
temperate– subtropical: 0.20 in 2013 (SD = 0.27) to 0.16 under 
RCP4.5 (SD = 0.23) and 0.14 under RCP8.5 (SD = 0.22)). Overlap 
among subtropical species, by contrast, increased under warming, 

(1)TR =
1

|
|TB0

|
|
2 ∫

tmax

t=0

|TB (t)|
2
dt,



    |  7Methods in Ecology and Evolu
onKuo et al.

from 0.06 in 2013 (SD = 0.04) to 0.13 under RCP4.5 (SD = 0.05) and 
0.17 under RCP8.5 (SD = 0.05). We are aware that the correlation 
between patterns of spatial overlap and patterns of ecological inter-
actions is often not straightforward in reality (Blanchet et al., 2020). 
However, shifts in spatial overlap between species under different 
climate scenarios does change trophic interactions in our models 
and has important consequences for model outcomes (see below).

3.2  |  Warming accelerates life history, but the 
magnitude of trait responses varies between species

Across species, the asymptotic weight and weight at maturity de-
creased with temperature, while the von Bertalanffy growth coefficient 
increased as temperatures rose (dashed lines in Figure 2), indicating less 
time was required for species to reach their maximal size. This is con-
sistent with the general finding that warming speeds up life history, 
making individuals growing faster yet to a smaller maximal size (Wang 
et al., 2020). At the same time, trait responses to temperature anomalies 
exhibited remarkable species- specific variation (Figure 2). For the von 
Bertalanffy growth coefficient, part of the variation could be attributed 
to size (i.e. asymptotic weight), as growth increased more with tempera-
ture in larger species (multiple R2 = 0.18, p = 0.07). On the other hand, 
the magnitude of temperature dependence for asymptotic weight did 
not significantly covary with size (multiple R2 = 0.002, p = 0.86).

3.3  |  Warming impacted species biomass and 
altered species size spectra

Warming reduced overall biomass of the community, with more se-
vere warming producing more pronounced impacts. The response of 

biomass to warming was more subtle and varied at the species level 
(Figure 3). In 10 species, warming substantially reduced biomass; in 
eight other species, biomass increased under warming. Notably, bio-
mass of three species (Glyptocephalus cynoglossus, Melanogrammus 
aeglefinus and Rostroraja eglanteria) responded to two warming 
scenarios in different directions; it increased under RCP4.5 but 
decreased under RCP8.5 (Figure 3). Rising temperatures also sub-
stantially altered size spectra in each species (Figure 3). One com-
mon outcome was an increase in relative biomass density for larger 
individuals, causing an upward shift in species size spectra (Figure 
S4). As informed by life- history data, the response of maximal size 
to warming differed between species, producing species- specific 
patterns; for most species, the maximal size decreased under warm-
ing, resulting in more compressed size spectra. Maximal size for 
several species, on the other hand, did not change drastically under 
warming— the shape of their size spectra was therefore relatively 
unaltered.

Warming also impacted species abundance and mean body 
size. The majority of species experienced a reduction in abundance 
and an increase in mean body size as temperatures rose. Changes 
in spatial overlap, species size spectra and species abundance due 
to warming particularly impacted larger individuals through com-
pounding effects on trophic interactions. As temperatures rose, 
larger individuals in most species fed at a lower rate compared to 
the maximum prey intake given their body sizes and prey abundance 
(Figures S5– S7). The decrease in fish biomass across the commu-
nity also meant that individuals that fed on other species had to rely 
more on the background resources to satisfy their dietary needs 
(Figures S8– S10). Examining warming impacts along the axis of hab-
itat type, the three pelagic species (orange circles in Figure 4) were 
impacted to a lesser degree by warming compared to other species 
of similar sizes; changes in their abundance and mean body size were 

F I G U R E  2  Changes in asymptotic weight (a), weight at maturity (b) and the von Bertalanffy growth coefficient (B) with temperature 
anomaly (deviation from the mean temperature of a species, 0 on the x- axis). Each solid line represents a trait- temperature anomaly 
regression. Grey lines are demersal species, orange lines are pelagic species and purple lines are benthopelagic species. The dotted line is 
the community- wide regression. Note the extensive variation between species. Life- history data were from FishBase (www.fishb ase.se) and 
literature search
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F I G U R E  3  The distribution of biomass density with size (i.e. size spectra) for the 19 focal species and the community as a whole in current 
(red curves) and future climates (RCP4.5, green curves; RCP8.5, blue curves). Note that data were plotted on a log– log scale. Vertical dash- 
dotted lines are mean body sizes; horizontal dashed lines are total biomass. The placement of the species reflects increasing asymptotic size 
from upper left to lower right. Numbers in parentheses denote trophic levels from Fishbase. Species abbreviations are as follows: Ap: Alosa 
pseudoharengus; as: Alosa sapidissima; ad: Ammodytes dubius; am: Anchoa mitchilli; Ch: Clupea harengus; Gm: Gadus morhua; Gc: Glyptocephalus 
cynoglossus; lf: Limanda ferruginea; La: Lophius americanus; ma: Melanogrammus aeglefinus; Mb: Merluccius bilinearis; Mo: Myoxocephlus 
octodecemspinosus; Pd: Paralichthys dentatus; pa: Pseudopleuronectes americanus; re: Rostroraja eglanteria; Sa: Squalus acanthias; Uc: Urophycis 
chuss; Ut: Urophycis tenuis; Za: Zoarces americanus. Abbreviations in orange, purple and black are pelagic, benthopelagic and demersal 
species, respectively. Abbreviations with an asterisk are subtropical species; those without are temperature species
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relatively minor. However, this pattern may be due, at least in part, 
to difference in species climate zone (i.e. subtropical or temperate), 
as two of the pelagic species were also subtropical (Alosa sapidissima 
and Anchoa mitchilli; open orange circles in Figure 4). Since warming 
impact was also minor in a subtropical demersal species (Rostroraja 
eglanteria; open black circle in Figure 4) and a temperate pelagic spe-
cies (Alosa pseudoharengus; filled orange triangle in Figure 4), it was 
likely that pelagic and subtropical species in our focal community 
fared better under warming. Benthopelagic species (purple circles in 
Figure 4), on the contrary, were among those whose abundance and 
mean body size were affected the most by warming.

3.4  |  Warming changes community resilience, 
but the exact effect depends on perturbation 
type and warming scenario

Community return time after large- scale, top- down perturbations 
decreased from 2013 to 2100 under RCP4.5 but increased under 
the RCP8.5 warming scenario (Table 1). On the other hand, return 

time after bottom- up perturbations increased instead from 2013 to 
2100 under RCP4.5 but decreased slightly under RCP8.5. Changes 
in community resilience therefore depended on both the type of 
perturbations and warming scenarios, which further demonstrated 
the complex nature of warming effects at the community level. 
Nevertheless, the community was able to eventually return to the 
pre- perturbation steady state in all scenarios, indicating that warm-
ing as modelled in this study was unlikely to cause the community to 
collapse after large perturbation events.

3.5  |  Ignoring changes in trophic interactions and 
life history leads to biased estimates of community 
structure and resilience

For both the RCP4.5 and RCP8.5 scenarios, the model containing 
all life- history and species- distribution predictors was either the 
single best model or among equally optimal models based on the 
AIC scores (Table S6). For this analysis, we excluded weight at ma-
turity as a predictor from all linear models to avoid multicollinear-
ity, as it was highly correlated with the asymptotic weight (R2 > 0.86 
in all climate scenarios). Indeed, changes in asymptotic weight, von 
Bertalanffy coefficient and habitat availability were all poor pre-
dictors of biomass changes by themselves, with the exception of 
changes in habitat availability under RCP8.5 (Figure 5). Not consid-
ering changes in life history and spatial overlap between species also 
biased the predicted species size spectra, even though the sever-
ity of such biases varied between species. In most cases, the biases 
were between twofold to 10- fold, but they could be as high as two 
orders of magnitude in the most extreme cases (Figures S11 and 
S12). The biases in the estimated community size spectra resulted 
in different return time of the community after large- scale distur-
bances, except for bottom- up perturbations under RCP85 (Table 1). 
Overall, the deviations were greater for RCP4.5 than for RCP8.5, 
and greater for top- down than for bottom- up disturbances. These 
results highlighted the importance of accounting for shifts in trophic 
interactions and life- history traits simultaneously when assessing 
community responses to warming.

4  |  DISCUSSION

In this study, we integrated information on physiology- guided spe-
cies distributions, life- history changes and food web dynamics to 

F I G U R E  4  Relative changes in abundance (a, b) and mean body 
size (c, d) for each species under RCP4.5 and RCP8.5, compared 
to 2013. Colouring of the circles are the same as in Figure 2. Filled 
circles are temperate species, and open circles are subtropical 
species. The red dotted line represents no change from 2013 to 
the future climate. The y- intercept for no change is at 1 instead of 
0 due to log- scale presentation of data. Grey lines are community- 
wide regressions
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TA B L E  1  Community return time after top- down and bottom- up perturbations under different climate and modelling scenarios. Mno.inter 
and Mno.life represent models that do not consider warming- induced changes in trophic interactions and life history, respectively

Return time (month) 2013

RCP4.5 RCP8.5

Full model Mno.inter Mno.life Full model Mno.inter Mno.life

Top- down 1,169.00 1,153.75 1,184.74 1,174.58 1,183.19 1,185.27 1,178.63

Bottom- up 1,202.19 1,207.28 1,201.56 1,201.77 1,201.53 1,201.53 1,201.53
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assess the response of our focal community to warming. We dem-
onstrated the merit of our integrative approach by showing that ex-
amining these aspects in isolation would produce partial, sometimes 
even misleading, assessments. Several key points emerged from our 
analyses.

4.1  |  Warming effects are largely dominated by 
species- specific responses

Species distribution models can inform warming impacts on the 
spatial matches between species and the environment, as well 
as the connectivity among species (Hollowed et al., 2013). Under 
warming, species often exhibit range shifts due to niche- tracking, 
either to avoid local extinction or to occupy newly available habitats 
(Román- Palacios & Wiens, 2020). Our SDM results conformed to the 
general observations that temperate species tended to experience 
more severe habitat shrinkage while subtropical species expanded in 
range (Pinsky et al., 2019). We note, however, that our SDM results 
did not quantify the full extent of species range shifts. A regional- 
scale study that covers the leading and trailing edges of species 
distribution would be required for this purpose. The SDM results 
also allowed us to consider the degree of warming for each species 
in a more realistic manner. Instead of assigning the same amount 
of temperature increase to all species (e.g. 2°C), we estimated the 

extent of warming for each species based on projected presence. 
Because of this, the temperatures that some species experienced 
did not necessarily increase more under the more severe warming 
scenario. In Glytpocephalus cynoglossus, for example, mean tempera-
ture across occupied habitats was actually higher under RCP4.5 than 
in RCP8.5. This seemingly paradoxical result was due to the fact that 
under RCP4.5 there were more habitats whose temperatures were 
near the upper inhabitable threshold of G. cynoglossus. Under more 
severe warming (RCP8.5), these habitats became uninhabitable, re-
sulting in a smaller number of occupied habitats with a lower mean 
temperature.

The responses of key life- history traits to warming captured 
changes of species phenology in the future. Due to this impor-
tance, several studies have examined warming- related changes in 
life- history traits, most commonly body size (Radchuk et al., 2019; 
Teplitsky & Millien, 2014; Zhang et al., 2015). However, there was 
often no consistent trend across taxa from these studies. More re-
cent studies that focused on life- history responses to warming in 
marine systems also discovered that, even though warming often 
sped up life history, taxon-  and lineage- specific responses to warm-
ing tended to be more dominant (Audzijonyte et al., 2020; Wang 
et al., 2020). Our analysis of warming effects on fish life history was 
in agreement with this general finding— the direction and magnitude 
of warming- induced life- history changes differed markedly among 
species (Figure 2).

F I G U R E  5  Relationships between changes in maximum size, von Bertalanffy growth coefficient, and habitat availability and changes in 
biomass under warming. Each circle represents a species. Filled circles and solid grey line are under RCP4.5, and open circles and dashed 
lines are under RCP8.5. The red dashed line denotes no change in biomass. The y- intercept for no change is at 1 instead of 0 due to log- scale 
presentation of data
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4.2  |  Warming responses of trophic 
dynamics, species biomass and community 
resilience are three emergent properties that may not 
be intuitively predicted

Numerous studies have examined warming effects on community- 
level trophic dynamics, yet there was no universal trend between the 
degree of impact and trophic position. Kirby and Beaugrand (2009) 
found that warming enhanced bottom- up control in the North Sea, 
thereby more severely impacting top predators. By contrast, Kratina 
et al. (2012) found that warming intensified top- down control in 
freshwater communities. As in life- history traits, the exact conse-
quences of warming on trophic dynamics appeared to be taxon spe-
cific and system specific, and it is not uncommon that warming led to 
an overall neutral effect at the community level (Kratina et al., 2012; 
Nelson et al., 2020). The interactions between bottom- up and top- 
down controls in complex food webs under warming have thus been 
considered an emergent property that may not be intuitively pre-
dicted a priori (Lynam et al., 2017). In our analyses, warming can 
alter trophic interactions through two mechanisms. First, changes 
in species size distributions affected prey suitability to predators. 
Second, range shifts due to warming changed the encounter prob-
abilities among species. Considering these two mechanisms, warm-
ing might be more impactful to higher level consumers feeding on 
other fish. Indeed, dietary shifts were more pronounced in higher 
level consumers in our focal community (e.g. Gadus morhua, Lophius 
americanus, Merluccius bilinearis, Squalus acanthias, Urophycis chuss 
and Zoarces americanus), which consumed less fish as temperatures 
rose (Figures S8– S10). However, our model only accounted for a de-
crease in background resource level under warming without explic-
itly modelling changes in size distribution, taxonomic composition 
and spatial distribution of the underlying planktons. Therefore, the 
impacts on species lower in the food chain could be underestimated 
in our analyses.

Warming- induced decrease in biomass and/or abundance is 
commonly reported in marine ecosystems (Blanchard et al., 2012; 
Cheung et al., 2011; Fernandes et al., 2013; Zhu et al., 2020). 
However, how such reduction might relate to characteristics of spe-
cies themselves, such as body size and habitat type, is not as fre-
quently tested. We predicted that small, temperate species would 
be impacted more by warming. Contrary to our prediction, there was 
no clear size dependency of warming impacts, as far as total biomass 
and abundance were concerned. Smaller species with faster life his-
tories did not suffer more reduction in biomass or abundance com-
pared to larger species (Figures 3 and 4). Overall, the magnitude of 
warming effects varied more among species than it did along the size 
axis, indicating that species- level variation played a more important 
role. The response of a species' biomass and abundance to warming 
therefore could not be readily predicted from its life history alone, 
nor could it be gauged simply from the extent of habitat shrinkage. 
The response of biomass to warming is therefore also an emergent 
property from our analytical framework. This emergent property is 
crucial in assessing community- level responses to warming and in 

evaluating the community's resilience to perturbations and its eco-
system functions. The highly species- specific responses to warming 
have led to another emergent property at the community level— the 
resilience to larger perturbations. Our analyses have shown that 
community resilience depended on type of perturbation, and that 
more severe warming did not necessarily render the community 
more vulnerable.

4.3  |  Utility of the framework in 
conservation and management

The size- spectrum models have proven a valuable tool for conserva-
tion and management in fisheries science (Canales et al., 2020; Datta 
& Blanchard, 2016; Szuwalski et al., 2017; Wo et al., 2020; Zhang 
et al., 2016, 2018). Our framework can further enhance the potential 
of size- spectrum models for more applied inquiries. In our models, 
the focal community was resilient to large top- down and bottom- up 
disturbances under warming. Even though the spatial interactions 
decreased between most species, the connectivity within the com-
munity appeared sufficient to maintain the community's ability to 
recover (O'Leary et al., 2017). We note here that there are a vari-
ety of other ways in which resilience could be defined and assessed 
that are outside the scope of this study (O'Leary et al., 2017; Thrush 
et al., 2009). Nevertheless, the merit of our framework in conserva-
tion and management was to construct a community in silico under 
future climates, which can be manipulated heuristically to test vari-
ous types of resilience that fit the purpose of the study. For exam-
ple, one could explore the types of disturbance that the community 
would most likely encounter and use the findings as a reference for 
future monitoring and management. As survey and monitoring data 
accumulate with time, the models can be further updated with em-
pirical data in an iterative manner for continual refinement. Since 
we have shown that each major element in the model had unique 
contributions to projecting the community under warming, the 
framework we presented in this study can serve as a holistic tool for 
evaluating conservation and management options, as well as related 
policymaking.

4.4  |  Model limitations and future directions

Having demonstrated the utility of our integrative analyses, here 
we list several limitations to our framework and point out direc-
tions for further research. First, the SDMs could not differentiate 
between range shifts due to thermal niche tracking and those due 
to changes in underlying resources. The impact of changes in local 
resources was potentially taken into account simultaneously by 
the SDMs and the size- spectrum model. In this regard, the SDMs 
and the size- spectrum models may not be truly independent from 
each other. In our analysis, we used only temperature when con-
structing SDMs, which should have partially alleviated the issue 
of redundant information. We caution future studies that use our 
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framework to be thoughtful about including information on local 
resource levels (e.g. primary production) when constructing SDMs 
for the analyses.

Second, out statistical life- history models assumed that tempera-
ture was the only factor affecting life- history trajectories of species. 
This is obviously an over- simplification. Anthropogenic factors, most 
notably fishing- related selection, have been shown to drive life- 
history evolution in marine species (Kuparinen et al., 2016). However, 
our framework can readily accommodate these factors by including 
them as predictors in the life- history analyses to better predict life- 
history changes as both temperature and fishing pressure change in 
the future. In addition, performing statistical analyses on life- history 
traits required sufficient population- level data. When such data are 
not available, we recommend two alternative approaches. The first 
one is to estimate key life- history traits for which data are lacking 
using equations developed by Thorson et al. (2017). Another alter-
native is to use temperature- dependent scaling in metabolic rate to 
infer changes in life- history traits. The package therMizer, which im-
plemented temperature dependence of metabolism in mizer, can be 
used for this purpose after explicitly linking life- history traits with 
metabolic rate (Woodworth- Jefcoats et al., 2019).

Third, changes in suitable habitats from the SDMs could poten-
tially constrain the output from size- spectrum models, as we used 
this information to produce a first- pass, ball- park biomass predic-
tions under future climates for mizer. We did not detect this issue for 
biomass predictions under RCP4.5, as changes in suitable habitats 
was a poor predictor of species biomass. This constraint could be 
more prominent under more extreme warming scenarios (RCP8.5), 
when species shifted more in range. Our biomass predictions can be 
updated as time progresses (e.g. every 10 years between now and 
2100) to evaluate and further calibrate against this issue. The model 
performance can be further enhanced if the relationships between 
the maximum recruit or reproductive efficiency and temperature are 
available for species of interest.

Fourth, we did not consider warming- induced changes in plank-
ton size spectra, taxonomic composition and spatial distribution 
in this study. Although empirical data are relatively scarce outside 
of laboratory mesocosms and local studies (Benedetti et al., 2019; 
Cabrerizo et al., 2021; He et al., 2020; Murphy et al., 2020; Pulina 
et al., 2020), incorporating these information would yield more ac-
curate model predictions whenever they are available. There are two 
specific directions for further implementations. First, more detailed 
modelling of changes in plankton size spectrum would enhance the 
ecological realism of the overall size- spectrum model (Woodworth- 
Jefcoats et al., 2019). Second, applying SDMs to project spatial 
changes in plankton abundance can further refine the precision in 
modelling warming impacts on background resources (Benedetti 
et al., 2021), but would require a more extensive modification of the 
size- spectrum model itself, potentially through including planktons 
into the interaction matrices.

Finally, even though the species distribution data and projec-
tions in our Bayesian SDMs were in the form of presence and ab-
sence, this is not a limitation to the method. In communities where 

species distributions are expressed with abundance, the Bayesian 
SDMs and the interaction matrices can be readily adjusted to accom-
modate the continuous abundance data. This would allow even more 
detailed modelling of species interactions and potentially generate 
predictions with better quantitative resolution. The aforementioned 
therMizer method can also implement temperature dependence of 
encounter rates between individuals, further fine- tuning the in-
teraction matrices produced from the SDM results (Woodworth- 
Jefcoats et al., 2019).

We advocate our analytical framework as an innovative tool 
for evaluating warming responses in other communities. When ap-
plied to a multi- regional or global dataset, our framework can test 
large- scale hypotheses regarding warming impacts on species. For 
example, how would warming effects vary among fishes inhabiting 
different places in the water column? How might warming differen-
tially affect fishes occupying different ecological niches and places 
in the phylogenetic tree? Questions like these represent exciting and 
fruitful avenues for future research.
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